MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	e 2 Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2015	0606	22

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	(i)	$ \begin{array}{c} $	B3,2,1,0	2 correctly placed in Venn diagram; 1, 3, 4, 6 correctly placed; 12, 8, 0, 7, 9, 10 correctly placed; 11, 5 correctly placed
	(ii)	3	B1ft	correct or correct ft <i>their</i> (i), provided non-zero
	(iii)	{4, 6}	B1ft	correct or correct ft <i>their</i> (i), provided not the empty set
2	(i)	$[\mathbf{P} =] \begin{pmatrix} 60 & 70 & 58 \\ 50 & 52 & 34 \end{pmatrix}$ and $[\mathbf{Q} =] (120 300)$	B2	or $[\mathbf{P} =] \begin{pmatrix} 50 & 52 & 34 \\ 60 & 70 & 58 \end{pmatrix}$ and $[\mathbf{Q} =] (300 120)$ or B1 if one error
	(ii)	(22200 24000 17160)	B2	 may be written as an unevaluated product; B0 if choice of P and Q offered must have brackets and must not have commas; must be a 1 by 3 matrix; must be from correct product; working may be seen in (i) or B1 for any two elements correct
	(iii)	The total (amount of revenue) from all (three) flights. oe	B1	do not accept, e.g. The total amount from each flight; must be a comment not just a figure; must not contain a contradiction

Page 3	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – May	/June 201	5 0606 22
3 (i)	$\frac{\left(36+15\sqrt{5}\right)}{\left(6+3\sqrt{5}\right)} \times \frac{\left(6-3\sqrt{5}\right)}{\left(6-3\sqrt{5}\right)} \text{ oe} \\ \frac{216+90\sqrt{5}-108\sqrt{5}-225}{-9}$	M1 DM1	or $\frac{\left(12+5\sqrt{5}\right)}{\left(2+\sqrt{5}\right)} \times \frac{\left(2-\sqrt{5}\right)}{2-\sqrt{5}}$ oe or $\frac{24+10\sqrt{5}-12\sqrt{5}-25}{-1}$
	-9 1+2 $\sqrt{5}$ cao	A1	-1 or $-\left(24+10\sqrt{5}\right)-12\sqrt{5}-25$ allow $a = 1$ and $b = 2$
	Alternative method: $36 + 15\sqrt{5} = (6a + 15b) + (3a + 6b)\sqrt{5}$	M1	
	6a + 15b = 36 3a + 6b = 15	DM1	
	a = 1 and $b = 2$	A1	or $1 + 2\sqrt{5}$
(ii)	$\begin{bmatrix} AC^2 = (6+3\sqrt{5})^2 + their(1+2\sqrt{5})^2 \end{bmatrix}$ = 36 + 36\sqrt{5} + 45 + their(1+4\sqrt{5}+20)	M1	correct or correct ft expansions, using Pythagoras with $(6+3\sqrt{5})$ and <i>their BC</i>
	$102 + 40\sqrt{5}$ cao	A1	ignore attempts to square root after correct answer seen
4 (i)	$\cos(x) = \frac{2}{3}$ oe soi	M1	Alternatively $\sin(y) = \frac{2}{3}$ oe soi
	48.189° or 131.810° or 0.8410 rad or 2.3(00) rad oe isw with reference axis indicated by comment, e.g. "to the bank" or "upstream", etc. or clearly marked on a diagram	A1	 41.810° or 0.7297 or 0.73(0) rad oe isw with reference axis indicated by comment, e.g. "to the perpendicular with the bank", etc. or clearly marked on a diagram If M0 then SC1 for an unsupported answer of 138.189° or 2.4118 rad or 318.189° or 5.5534 rad with reference axis indicated by comment, e.g. "on a bearing of" or "from North" or clearly marked on a diagram

Page 4	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – May/June 2015			0606	22
(ii)	Speed = $\sqrt{9-4} \left(=\sqrt{5}\right)$ or $3\sin 48.2$ or	B1	Or Distance = $\frac{1}{\sin^2 i}$	$\frac{80}{n48.2} = 107.$	(33)
	$2 \tan 48.2 \text{ or } 3\cos 41.8 \text{ or } \frac{2}{\tan 41.8} \text{ or}$				oe soi
	$\sqrt{2^2 + 3^2 - 2 \times 2 \times 3\cos 48.2}$ oe				
	or 2.236(0) rot to 4 or more figs or 2.24 [m/s] soi				
	time = $\frac{80}{their \sqrt{5}}$ oe	M1	time = $\frac{their 107.3}{3}$	33	
	35.66 to 35.8 (seconds) oe	A1	ignore subsequent conversion to, e.g answer spoiled by	. minutes but	A0 if
			if no working, so for an answer 35.		
5	Substitution of either $4 - x$ or $4 - y$ into equation of curve and brackets expanded	M1	condone one sign equation of curve brackets; condone 4 - x or $4 - y$ mus	or expansion or or or or or	n of
	$12x^2 - 52x + 48 = 0$ or $12y^2 - 44y + 32 = 0$ oe	A1			
	Solve their 3-term quadratic	M1	dep on a valid sub	ostitution atte	mpt
	$x = \frac{4}{3}$ and 3 isw	A1	or $x = \frac{4}{3}$ $y = \frac{8}{3}$		
	5		not from wrong w	vorking	
	$y = \frac{8}{3}$ and 1 isw	A1	or $x = 3$ $y = 1$ not from wrong w	vorking	
			if no working, all correct answer on		s for fully
6 (a)	$(x-2) \log 6 = \log \left(\frac{1}{4}\right)$ oe or	M1	or $x \log 6 = \log \left(\frac{3}{2}\right)$	$\left(\frac{6}{4}\right)$ oe	
	$\log_6\left(\frac{1}{4}\right) = x - 2 \text{ oe}$		or $x \log 6 - \log 36$	$= \log 1 - \log 1$;4 oe
	1.23 or 1.226(29) rot to 4 or more figures isw	A1	correct answer or	1.22 implies	M1

Page 5	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – May/June 2015			0606	22
(b)	Method 1 $\log\left(\frac{8 \times 2y^2 \times 16y}{64y}\right) = \log 4^2 \text{ oe}$	В3	or B2 if at most o or B1 if at most t steps		
	y = 2	B1	not from wrong w	vorking	
	Method 2 $\log 2 + 2 \log y + 3 \log 2 + 4 \log 2 + \log y - 6 \log 2 - \log y = 4 \log 2$	B3,2,1,0	<u>LHS terms</u> log $2y^2 = \log 2 + 2$ log $8 = 3 \log 2$; log $16y = 4 \log 2$		
			$-\log 64 y = -6 \log \frac{1}{2} \log 4 = 4 \log 2$	$2 - \log y;$	
	y = 2	B1	not from wrong w	vorking	
7	$\frac{n(n-1)(n-2)(n-3)(2^4)}{4\times 3\times 2\times 1} = 10\frac{n(n-1)(2^2)}{2\times 1}$ or better	M3	condone omitting $n-1$; must have		
			M2 if one slip/on or M1 if two slips		
			or B1 for $\frac{n(n-1)}{2}(2$	$(x^2)^2 [x^2]$ seen	
			and B1 for $\frac{n(n-1)(n-2)}{2}$	$\frac{(n-2)(n-3)}{24}$ (2)	$\int_{-1}^{4} [x^{4}]$
	$n^2 - 5n - 24 = 0$ oe	A1	seen equivalent must b $n^2 - 5n = 24$	be 3-terms, e.g	g.
	(n+3)(n-8) = 0	M1	or any valid meth 3-term quadratic		
	n = 8 only	A1	A0 if -3 also give not discarded If zero scored, all unsupported or w	low SC1 for n	r = 8

Page 6	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May	5 0606 22	
8	Method 1 (Separate areas subtracted)		
0		D1	
	$[x_B = x_C =] 7 \text{ soi}$	B1	
	$\left[\int (x^2 - 6x + 10) dx = \right] \frac{x^3}{3} - \frac{6x^2}{2} + 10x$	M2	or M1 for at least one term correct
	Correct or correct ft substitution of limits 0	DM1	dep on at least M1 being earned;
	and <i>their</i> 7 into <i>their</i> $\left[\frac{x^3}{3} - \frac{6x^2}{2} + 10x\right]$		evidence of substitution must be seen in <i>their</i> integral which must be at least two terms; condone omission of lower limit;
	$\frac{1}{2}(10+17) \times 7$ oe or	B2	or M1 for
			$\frac{1}{2}$ (their 10 + their 17) × their 7 oe
	$\int_{0}^{7} (x+10) dx = \left[\frac{x^{2}}{2} + 10x \right]_{0}^{7} = \frac{(7)^{2}}{2} + 10(7)$		or B1 for
	L J0 oe		$\int (x+10) dx = \frac{x^2}{2} + 10x$
	$their\left(\frac{189}{2} - \frac{112}{3}\right)$	M1	dep on a genuine attempt to integrate the
			equation of the curve; must be <i>their</i> area trapezium/under the line – <i>their</i> attempt at area under curve
	$\frac{343}{6}$ or 57 $\frac{1}{6}$ or 57.2 to 3 sf or 57.16(6)	A1	from full and correct working with no
	6 6 rot to 4 figs isw		omitted steps
	Method 2 (Subtracting and using integration once)		
	$\left[x_B = x_c = \right] 7 \text{ soi}$	B1	
	$\int \left(-x^2 + 7x\right) dx$ $\left[-\frac{x^3}{3} + \frac{7x^2}{2}\right] \text{ oe or } \left[\frac{x^3}{3} - \frac{7x^2}{2}\right] \text{ oe }$	B1	condone omission of dx
	$\left[-\frac{x^3}{x^2}+\frac{7x^2}{x^2}\right]$ of $\left[\frac{x^3}{x^2}-\frac{7x^2}{x^2}\right]$ of	M3	or M2 for
			$\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2}$ or either with
			$p = \pm 1$ or $q = \pm 7$ 3 2
			or M1 for $\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2}$
			with non-zero constants p and q, with $p \neq -3$
	Correct or correct ft substitution of limits 0	140	± 1 and $q \neq \pm 7$ dep on a valid integration attempt;
	and <i>their</i> 7	M2	evidence of substitution must be seen;
	into their $\left[-\frac{x^3}{3}+\frac{7x^2}{2}\right]$		condone omission of lower limit;
	$\begin{bmatrix} 1110 & 1100 \\ \hline 3 & \hline 2 \end{bmatrix}$		
	$\frac{343}{6}$ or 57 $\frac{1}{6}$ or 57.2 to 3 sf or 57.16(6)	A1	from full and correct working with no
	rot to 4 figs isw		omitted steps
		1	1

Page 7	Mark Scheme	Syllabus	Paper		
	Cambridge IGCSE – May/June 2015			0606	22
9 (i)	10 = 2m + 4 soi	M1	or $[m=]\frac{10-4}{2-0}$ of	e soi	
	m = 3	A1			
(ii)	1	B1			
(iii)	$\frac{10 - y_R}{2 - 1} = 1$ oe soi	M1	or $y = x + 8$ oe		
	(-1, 7) or $x = -1$ and $y = 7$	A1	if $y = 7$ only state x = -1 is soi in we		
			if M0 then B1 for working	y = 7 only w	rith no
(iv)	Use of $m_1 m_2 = -1$ with <i>their m</i> from (i)	M1	may be implied by seen in equation	y perpendicu	lar gradient
	$y - 10 = \left(their - \frac{1}{3}\right)(x - 2)$	A1	or $\left(their - \frac{1}{3}\right)x + $	c and	
			$10 = \left(their - \frac{1}{3}\right)2$	+ c	
	3y + x = 32 isw	A1	allow for correct of coefficients in any		
(v)	$\left(\frac{1}{2}, their\frac{11}{2}\right)$ oe isw	B1,B1ft	ft their y_O		
	$\left(\frac{1}{2}, \frac{1}{1000}, \frac{1}{2}\right)$ oc isw	21,211	, y y		
			or M1 for $\left(\frac{2-1}{2}\right)$,	$\frac{10+1}{2}$ seen	
(vi)	4.5 oe cao	B2	not from wrong w	vorking	
			or M1 for any cor coordinates	rrect method	with correct
10 (a)		B2,1,0	correct sinusoidal shape, all above <i>x</i> all maximum poir	-axis with in	tent to have
	<u> </u>		2 maximum point height only over (l equal
			all max points cle	early at $y = 1$;	
	• • • • • •		cusp at 180		
			т., ,		

(b))(i)	$[hg(x) =] \frac{e^{\ln(4x-3)} + 3}{4}$	M1	Alternative method $y = \ln(4x - 3)$ and change of subject to x
		fully correct and completion to $[hg(x) =] x$	A1	fully correct and comment that $h(x) = g^{-1}(x)$ oe
((ii)	y = h(x) y = g(x)	B2,1,0	correct shape; 1 marked on the <i>y</i> -axis or (0, 1) stated close by; curve with positive gradient in first quadrant only
(i	iii)	$x \ge 0$ or $[0,\infty)$	B1	not domain ≥ 0
(i	(iv)	$y \ge 1$ or $[1, \infty)$	B1	or $h(x) \ge 1$, $h \ge 1$ etc.
11 (i	i)	$\frac{8-h}{8} \text{ or } 8:8-h \text{ soi}$	M1	or $\frac{8}{8-h}$ or $8-h$: 8 soi
		$\frac{8-h}{8} \times 4$ oe	A1	or $4 \div \frac{8}{8-h}$ oe
		$h\left(\frac{8-h}{8}\times4\right)^2$ oe	M1	<i>h</i> must be in the numerator of the expression for this mark;
		expand and simplify to $\frac{h^3}{4} - 4h^2 + 16h$ AG	A1	
(ii	i)	$\frac{3}{4}h^2 - 8h + 16$ oe	B1	
		$their\left(\frac{3}{4}h^2 - 8h + 16\right) = 0$ and attempt to solve	M1	must be a 3-term quadratic; must be an attempt at a derivative
		$\frac{8}{3}$ oe only	A2	or A1 for $h = \frac{8}{3}$ and 8
				allow 2.67 or 2.66(6) rot to 4 or more figs for $\frac{8}{3}$

Page 9	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – May	/June 201	5 0606 22
12 (i)	-120 + 104 + 22 - 6 = 0	B1	or correct synthetic division
	or correct unsimplified form, e.g. $15(-2)^3 + 26(-2)^2 - 11(-2) - 6 = 0$ or 15(-8) + 26(4) - 11(-2) - 6 = 0		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(ii)	Substituting $x = 3$ into $15x^3 + 26x^2 - 11x - 6$	M1	or correct synthetic division $3 \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	600	A1	correct answer implies M1; must be explicitly identified as answer if using synthetic/long division methods by e.g. circling
(iii)	$(x-1)(15x^3+26x^2-11x-6)$ soi	B1	by inspection or division; may be implied by e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and $a = 1, b = -1$ seen in later work comparing coefficients
	Multiply out $(x \pm 1)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic	M1	or multiply out, e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic
	p = 11 $q = 5$	A1 A1	correct p or q implies M1; correct p and q www implies B1 M1